Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Nazan Ocak, ${ }^{\text {a }}$, Samil Ișıı, ${ }^{\text {a }}$ Nesuhi Akdemir, ${ }^{\text {b }}$ Cihan Kantar ${ }^{\text {b }}$ and Erbil Ağar ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayís University, TR-55139 Kurupelit-Samsun, Turkey, and ${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Samsun, Turkey

Correspondence e-mail: nocak@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.040$
$w R$ factor $=0.108$
Data-to-parameter ratio $=16.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

4,5-Bis(2-tert-butylphenoxy)phthalonitrile

The title compound, $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}$, contains three aromatic rings, which are not coplanar and which are distorted from ideal $C_{2 v}$ symmetry. The crystal structure involves four intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

4,5-Bis(2-tert-butylphenoxy)phthalonitrile, (I), is a precursor in the synthesis of symmetrically and unsymmetrically substituted phthalocyanines (Leznoff \& Lever, 1989-1996). Pthalocyanines possess some remarkable properties which render them important commercial commodities. The production of phthalocyanines for the use of dyes and pigments is around 80000 tons per year (Wöhrle, 2001). In the past few years, a great deal of interest has been focused on the synthesis of phthalocyanine derivatives as a result of their application in many fields, such as chemical sensors, electrochromism, batteries, semiconductor materials, liquid crystals and non-linear optics (Leznoff \& Lever, 1989-1996). One of the most promising fields is the use of phthalocyanine derivatives as photosensitizers for photodynamic therapy (PDT), an emerging new bimodal strategy for treating a wide variety of conditions, such as psoriasis, cancer, and dysplastic and infectious diseases, and for prevention of HIV-1 infection (Leznoff \& Lever, 1989-1996; Vzorov et al., 2003).

(I)

The title compound, (I), consists of a phthalonitrile moiety carrying 2-tert-butylphenoxy substituents at C 4 and C 5 (Fig. 1). The molecular structure of (I) is shown in Fig. 1. Tables 1 and 2 list selected molecular and hydrogen-bonding geometry, respectively. The $\mathrm{C} 7 \equiv \mathrm{~N} 1$ and $\mathrm{C} 8 \equiv \mathrm{~N} 2$ bond distances are 1.139 (2) and 1.135 (2) \AA, respectively, consistent with $\mathrm{N} \equiv \mathrm{C}$ triple-bond character. They are also comparable with literature values (Öztürk et al., 1999, 2000; Subbiah Pandi et al., 2002; Ocak et al., 2003, 2004).

The geometry of (I) is distorted from ideal $C_{2 v}$ symmetry, with a dihedral angle between rings $A(\mathrm{C} 1-\mathrm{C} 6)$ and $B(\mathrm{C} 9-$ $\mathrm{C} 14)$ of $69.15(4)^{\circ}$, between rings A and $C(\mathrm{C} 19-\mathrm{C} 24)$ of $73.74(5)^{\circ}$, and between rings B and C of $28.59(6)^{\circ}$. While the bond lengths at oxygen are essentially equal, the $\mathrm{C} 4-\mathrm{O} 1-$ C9-C14 and $\mathrm{C} 5-\mathrm{O} 2-\mathrm{C} 19-\mathrm{C} 24$ torsion angles of $-125.09(16)$ and $121.21(16)^{\circ}$, respectively, are different. This destroys any molecular symmetry.

Received 22 December 2003
Accepted 28 January 2004
Online 14 February 2004

Figure 1
An ORTEPIII drawing (Burnett \& Johnson, 1996) of the title compound, showing the atomic numbering scheme. Displacement ellipsoids for nonH atoms are drawn at the 40% probability level.

There are intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions in the structure of (I). Firstly, atom O1 forms an intramolecular bifurcated hydrogen bond with atoms $\mathrm{H} 17 B$ and $\mathrm{H} 16 C$. Similarly, atom O 2 forms an intramolecular bifurcated hydrogen bond with atoms $\mathrm{H} 27 A$ and $\mathrm{H} 26 A$ (Fig. 1 and Table 2).

Experimental

4,5-Bis(2-tert-butylphenoxy)phthalonitrile was synthesized according to reported procedures with minor modifications (Matlaba \& Nyokong, 2002). Single crystals were obtained by slow evaporation of an absolute ethanol solution at room temperature.

Crystal data

$\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=424.52$
Monoclinic, $P 2_{1} / n$
$a=10.8426$ (10) \AA
$b=21.704$ (2) A
$c=11.0967(9) \AA$
$\beta=107.920(7)^{\circ}$
$V=2484.6$ (4) \AA^{3}
$Z=4$

Data collection

Stoe IPDS-2 diffractometer ω scans
Absorption correction: by integration (X-RED32;
Stoe \& Cie, 2002)
$T_{\text {min }}=0.971, T_{\text {max }}=0.985$
17816 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.108$
$S=0.80$
4880 reflections
290 parameters
H -atom parameters constrained
$D_{x}=1.135 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 6510
reflections
$\theta=1.9-27.5^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, green
$0.50 \times 0.35 \times 0.22 \mathrm{~mm}$

4880 independent reflections
2371 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.054$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-13 \rightarrow 13$
$k=-26 \rightarrow 26$
$l=-13 \rightarrow 13$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0579 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.16 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.11 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: $0.0113(11)$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

O1-C4	$1.3603(18)$	C15-C17	$1.530(3)$
O1-C9	$1.4031(19)$	C15-C16	$1.534(3)$
O2-C5	$1.3608(18)$	C15-C18	$1.536(3)$
O2-C19	$1.4050(18)$	C25-C28	$1.532(3)$
C7-N1	$1.139(2)$	C25-C26	$1.533(3)$
C8-N2	$1.135(2)$	C25-C27	$1.536(3)$
C4-O1-C9	$120.01(12)$	C14-C15-C18	$112.17(17)$
C5-O2-C19	$118.56(12)$	C24-C25-C28	$111.67(17)$
C14-C15-C17	$110.92(15)$	C24-C25-C26	$109.46(15)$
C14-C15-C16	$109.17(16)$	C24-C25-C27	$110.17(16)$
C4-O1-C9-C14	$-125.09(16)$	C5-O2-C19-C24	$121.21(16)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C17-H17B $\cdots \mathrm{O} 1$	0.96	2.35	$3.004(2)$	124
C27-H27A O2	0.96	2.36	$3.022(2)$	126
C16-H16C \cdots O1	0.96	2.43	$3.063(2)$	123
C26-H26A O2	0.96	2.39	$3.054(3)$	126

The H atoms were placed geometrically and refined using a riding model, fixing the aromatic $\mathrm{C}-\mathrm{H}$ distance at $0.93 \AA$ and methyl group $\mathrm{C}-\mathrm{H}$ distance at $0.96 \AA . U_{\text {iso }}(\mathrm{H})$ values were calculated as $1.2 U_{\text {eq }}\left(\mathrm{C}_{\text {aromatic }}\right)$ and $1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)$ of the parent atom.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Leznoff, C. C. \& Lever, A. B. P. (1989-1996). Phthalocyanines: Properties and Applications, Vols 1, 2, 3 \& 4. Weinheim/New York: VCH Publishers Inc.
Matlaba, P. \& Nyokong, T. (2002). Polyhedron, 21, 2463-2472.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Ocak, N., Ağar, A., Akdemir, N., Ağar, E., García-Granda, S. \& Erdönmez, A. (2003). Acta Cryst. E59, o1000-o1001.

Ocak, N., Çoruh, U., Akdemir, N., Kantar, C., Ağar, E. \& Erdönmez, A. (2004). Acta Cryst. E60, o33-o34.

Öztürk, S., Işık, Ş., Ağar, E., Şaşmaz, S., Fun, H.-K. \& Erdönmez, A. (2000). Spectrosc. Lett. 33, 245-254.
Öztürk, S., Işık, Ş., Fun, H.-K., Kendi, E., Ağar, E., Şaşmaz, S. \& İbrahim, A. R. (1999). Acta Cryst. C55, 395-397.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Subbiah Pandi, A., Rajakannan, V., Velmurugan, D., Parvez, M., Kim, M. J., Senthilvelan, A. \& Narasinga Rao, S. (2002). Acta Cryst. C58, o164-o167.
Vzorov, A. N., Marzilli, L. G., Compans, R. W. \& Dixon, D. W. (2003). Antiviral Res. 59, 99-109.
Wöhrle, D. (2001). Macromol. Rapid Commun. 22, 68-97.

