Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Nazan Ocak,^a* Şamil Işık,^a Nesuhi Akdemir,^b Cihan Kantar^b and Erbil Ağar^b

^aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayís University, TR-55139 Kurupelit-Samsun, Turkey, and ^bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Samsun, Turkey

Correspondence e-mail: nocak@omu.edu.tr

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.040 wR factor = 0.108 Data-to-parameter ratio = 16.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title compound, $C_{28}H_{28}N_2O_2$, contains three aromatic rings, which are not coplanar and which are distorted from ideal $C_{2\nu}$ symmetry. The crystal structure involves four intramolecular C-H···O hydrogen bonds.

4,5-Bis(2-tert-butylphenoxy)phthalonitrile

Received 22 December 2003 Accepted 28 January 2004 Online 14 February 2004

Comment

4,5-Bis(2-tert-butylphenoxy)phthalonitrile, (I), is a precursor in the synthesis of symmetrically and unsymmetrically substituted phthalocyanines (Leznoff & Lever, 1989-1996). Pthalocyanines possess some remarkable properties which render them important commercial commodities. The production of phthalocyanines for the use of dyes and pigments is around 80 000 tons per year (Wöhrle, 2001). In the past few years, a great deal of interest has been focused on the synthesis of phthalocyanine derivatives as a result of their application in many fields, such as chemical sensors, electrochromism, batteries, semiconductor materials, liquid crystals and non-linear optics (Leznoff & Lever, 1989-1996). One of the most promising fields is the use of phthalocyanine derivatives as photosensitizers for photodynamic therapy (PDT), an emerging new bimodal strategy for treating a wide variety of conditions, such as psoriasis, cancer, and dysplastic and infectious diseases, and for prevention of HIV-1 infection (Leznoff & Lever, 1989-1996; Vzorov et al., 2003).

. The title compound, (I), consists of a phthalonitrile moiety carrying 2-*tert*-butylphenoxy substituents at C4 and C5 (Fig. 1). The molecular structure of (I) is shown in Fig. 1. Tables 1 and 2 list selected molecular and hydrogen-bonding geometry, respectively. The C7 \equiv N1 and C8 \equiv N2 bond distances are 1.139 (2) and 1.135 (2) Å, respectively, consistent with N \equiv C triple-bond character. They are also comparable with literature values (Öztürk *et al.*, 1999, 2000; Subbiah Pandi *et al.*, 2002; Ocak *et al.*, 2003, 2004).

The geometry of (I) is distorted from ideal $C_{2\nu}$ symmetry, with a dihedral angle between rings A (C1–C6) and B (C9– C14) of 69.15 (4)°, between rings A and C (C19–C24) of 73.74 (5)°, and between rings B and C of 28.59 (6)°. While the bond lengths at oxygen are essentially equal, the C4–O1– C9–C14 and C5–O2–C19–C24 torsion angles of -125.09 (16) and 121.21 (16)°, respectively, are different. This destroys any molecular symmetry.

Printed in Great Britain - all rights reserved

© 2004 International Union of Crystallography

Figure 1

An ORTEPIII drawing (Burnett & Johnson, 1996) of the title compound, showing the atomic numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 40% probability level.

There are intramolecular C-H···O interactions in the structure of (I). Firstly, atom O1 forms an intramolecular bifurcated hydrogen bond with atoms H17B and H16C. Similarly, atom O2 forms an intramolecular bifurcated hydrogen bond with atoms H27A and H26A (Fig. 1 and Table 2).

Experimental

4,5-Bis(2-tert-butylphenoxy)phthalonitrile was synthesized according to reported procedures with minor modifications (Matlaba & Nyokong, 2002). Single crystals were obtained by slow evaporation of an absolute ethanol solution at room temperature.

Crystal data

4880 reflections

290 parameters

H-atom parameters constrained

$C_{28}H_{28}N_2O_2$	$D_x = 1.135 \text{ Mg m}^{-3}$
$M_r = 424.52$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 6510
a = 10.8426 (10) Å	reflections
b = 21.704 (2) Å	$\theta = 1.9-27.5^{\circ}$
c = 11.0967 (9) Å	$\mu = 0.07 \text{ mm}^{-1}$
$\beta = 107.920 \ (7)^{\circ}$	T = 293 (2) K
$V = 2484.6 (4) \text{ Å}^3$	Prism, green
Z = 4	$0.50 \times 0.35 \times 0.22 \text{ mm}$
Data collection	
Stoe IPDS-2 diffractometer	4880 independent reflection
ω scans	2371 reflections with $I > 2c$
Absorption correction: by	$R_{\rm int} = 0.054$
integration (X-RED32;	$\theta_{\rm max} = 26.0^{\circ}$
Stoe & Cie, 2002)	$h = -13 \rightarrow 13$
$T_{\min} = 0.971, T_{\max} = 0.985$	$k = -26 \rightarrow 26$
17 816 measured reflections	$l = -13 \rightarrow 13$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0579P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.040$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.108$	$(\Delta/\sigma)_{\rm max} = 0.001$
S = 0.80	$\Delta \rho_{\rm max} = 0.16 \ {\rm e} \ {\rm \AA}^{-3}$

1.5	
mm^{-1}	
2) K	
een	
$35 \times 0.22 \text{ mm}$	

ctions $> 2\sigma(I)$

 $(9P)^{2}$ $\binom{2}{c}/3$ $\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-2}$ $\Delta \rho_{\rm min} = -0.11 \text{ e} \text{ Å}^{-3}$ Extinction correction: SHELXL97 Extinction coefficient: 0.0113 (11)

Table 1

Selected geometric parameters (Å, °).

O1-C4	1.3603 (18)	C15-C17	1.530 (3)
O1-C9	1.4031 (19)	C15-C16	1.534 (3)
O2-C5	1.3608 (18)	C15-C18	1.536 (3)
O2-C19	1.4050 (18)	C25-C28	1.532 (3)
C7-N1	1.139 (2)	C25-C26	1.533 (3)
C8-N2	1.135 (2)	C25-C27	1.536 (3)
C4-O1-C9	120.01 (12)	C14-C15-C18	112.17 (17)
C5-O2-C19	118.56 (12)	C24-C25-C28	111.67 (17)
C14-C15-C17	110.92 (15)	C24-C25-C26	109.46 (15)
C14-C15-C16	109.17 (16)	C24-C25-C27	110.17 (16)
C4-O1-C9-C14	-125.09 (16)	C5-O2-C19-C24	121.21 (16)

Fable 2		
Hydrogen-bonding geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C17−H17 <i>B</i> ···O1	0.96	2.35	3.004 (2)	124
$C27 - H27A \cdots O2$	0.96	2.36	3.022 (2)	126
C16−H16C···O1	0.96	2.43	3.063 (2)	123
$C26-H26A\cdots O2$	0.96	2.39	3.054 (3)	126

The H atoms were placed geometrically and refined using a riding model, fixing the aromatic C–H distance at 0.93 Å and methyl group C-H distance at 0.96 Å. $U_{iso}(H)$ values were calculated as $1.2U_{eq}(C_{aromatic})$ and $1.5U_{eq}(C_{methyl})$ of the parent atom.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

References

Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Leznoff, C. C. & Lever, A. B. P. (1989-1996). Phthalocyanines: Properties and Applications, Vols 1, 2, 3 & 4. Weinheim/New York: VCH Publishers Inc. Matlaba, P. & Nyokong, T. (2002). Polyhedron, 21, 2463-2472.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Ocak, N., Ağar, A., Akdemir, N., Ağar, E., García-Granda, S. & Erdönmez, A. (2003). Acta Cryst. E59, o1000-o1001.
- Ocak, N., Coruh, U., Akdemir, N., Kantar, C., Ağar, E. & Erdönmez, A. (2004). Acta Cryst. E60, o33-o34
- Öztürk, S., Işık, Ş., Ağar, E., Şaşmaz, S., Fun, H.-K. & Erdönmez, A. (2000). Spectrosc. Lett. 33, 245-254.
- Öztürk, S., Işık, Ş., Fun, H.-K., Kendi, E., Ağar, E., Şaşmaz, S. & İbrahim, A. R. (1999). Acta Cryst. C55, 395-397.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.
- Subbiah Pandi, A., Rajakannan, V., Velmurugan, D., Parvez, M., Kim, M. J., Senthilvelan, A. & Narasinga Rao, S. (2002). Acta Cryst. C58, o164-o167.
- Vzorov, A. N., Marzilli, L. G., Compans, R. W. & Dixon, D. W. (2003). Antiviral Res. 59, 99-109.
- Wöhrle, D. (2001). Macromol. Rapid Commun. 22, 68-97.